138

Acta Cryst. (1948). 1, 138

The Fourier Method of Crystal-Structure Analysis

By W. CocuranN

Crystallographic Laboralory, Cavendish Laboratory, Cambridge, England

(Received 8 March 1948)

Alternative methods which could be used to derive accurate atomic co-ordinates from the data
provided by an X.ray investigation of a crystal structure are discussed. 1t is shown that the
customary Fourier series method is closely related to the least-squares method applied to this
problem by Hughes. On the basis of this result a way in which the Fourier method can be modified
to give less weight to certain coefficients has been discovered. The effect of terminating the Fourier
series or introducing an artificial temperature factor is also investigated from the point of view
of the relation between the Fourier and least-squares solutions. 1t is concluded that no significant
increase in accuracy could be obtained by abandoning the Fourier method.

1. Introduction

Structure determinations by the methods of X-ray
crystallography may be divided into two classes: those
in which the object of the investigation is to determine
the positions of the atoms with sufficient accuracy to
give a general picture of the crystal structure,and those
in which the object is to measure as accurately as
possible the bond lengths and bond angles between
the atoms. The method of Fourier synthesis from
observed X-ray reflexion intensities has been widely
used for both purposes, although the writer is not aware
that any attempt has been made to show that it is the
best way of utilizing the experimental data when the
second of these objects is the one in view. Alternative
methods have been suggested by Hughes (1941) and by
Booth (1947a); their methods are similar in that the
atomic co-ordinates are chosen so as to minimize some
function of the observed and calculated structure
amplitudes, F, and F, respectively. In the least-
squares method as used by Hughes the function mini-
mized was Xw(F,— F )%, while Booth has suggested
minimizing Zw(F2%— F%?2, and has shown how this can
be done systematically by the method of ‘steepest
descents’. Weighting factors w are introduced to allow
for the fact that the F,’s are not all measurable with the
same accuracy; an obvious weakness of the Fourier
method is that all F;’s, including those few likely to be
systematically in error because of extinction, ete., must
be included as coefficients in the Fourier series and must
therefore influence the result. The purpose of this note
is to investigate the relationship between the Fourier
and other methods and to point out ways in which the
former can be improved. It is worth pointing out that
we shall be concerned only with the problem of finding
the best atomic co-ordinates—defined as those points
at which the electron density reaches a maximum and
around which the electron distribution is spherically
symmetric in a small region. If it is desired to investi-
gate the actual electron distribution, the Fourier
method is the only one which can be used.

2. The relation between the Fourier and least
squares methods
Consider a structure based on a space group which has
a centre of symmetry, the structure consisting of m
spherically symmetric atoms. To avoid repetition of
equations put
ry=ur,

hy=h,

=Y,

hy=k,

ry=z,
hy=1,

so0 that x; may denote x, y or z according as j=1, 2 or 3.

Let the co-ordinates of the rth atom be z,,, 2,9, I,5. As

a simplification it will be assumed that the three a-axes

are orthogonal, although this is not an inherent
limitation. Then
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The symbols F, f and p have their usual meanings,

2 denotes a triple summation over k,, k, and 2, which
<

includes all F’s of finite magnitude.
Experimentally, one measures F,= F + 3, where f is
an error of measurement, and derives therefore

o= 3 F,cos 27r[2 ki) .

'y \ o4 I
The atomic co-ordinates derived experimentally there-
fore differ from the true co-ordinates. Let z,; be the
experimentally determined co-ordinate corresponding
to the true co-ordinate x,;. Since the electron density
is to be a maximum at x;=ux,;, it follows that

(2:3)

x,;]l =0

9, -2 h;
('&) =TS b Fsin2n|5 (2-4)
a‘ri. I=1y ajl N lj a; ’
Now put
S [ "11‘;/‘\{
F (hyhyhg) =3 f,cos2m >~ 4, (2-5)
T lj a; J
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so that F, denotes one of a set of structure ampli-
tudes calculated from experimentally determined co-
ordinates. Clearly since the Fourier series is assumed
to be completely convergent a synthesis using the F’s
as coefficients must give back the atomic co-ordinates
which were used in deriving the F,’s. Therefore

J RS lj J

9. —2m . { h,»x;.l
T o eeeiimem . i _J =0. .
(31‘ .)"j“‘";j a; V Z h; Fc sin 27 Z ——a J (2 6)

Now from (2-5)

-2 T ,
OF =2} ¢ sinoml K @7)
S |5 e |
Therefore, subtracting (2:6) from (2-4) and using (2:7),
1 oF
- (F,—F,) - ==0. 2-8
B Pg e
Now consider the function
i
¢T=Z_ (Fo_Fc)g'
N fr

The co-ordinates z,; which make ¢, a minimum are
given by

0 . 1
;—?,r =0, 1.e. 2 .
Ty N f r
But this is identical with (2-8), so that the atomic co-
ordinates determined by Fourier synthesis are such as

oF
—_ »--—c- = n.
(Fo=Fo 3

rj

1 . .
to render ¥+ (F,—F,)? a minimum. The Fourier
NJr
solution is thus a special case of the least-squares

solution in which the weight given to each observation
is inversely proportional to the magnitude of the corre-
sponding atomic scattering factor. The fact that ¢, is
a function of f, means that a different function is
minimized for each different kind of atom in the
structure, but since the f-curves of all atoms are similar
except in scale it is practically the same function that
is minimized for all.

3. A modification of the Fourier method

The fact that the Fourier and least-squares methods
are related and that in the latter observations can be
weighted according to one’s estimate of their probable
error suggests that there may be some way of doing this
when using the former method. That this is so can be
shown as follows.

Let (x,;), be one of the atomic co-ordinates deter-
mined by the unmodified Fourier method. Each co-
ordinate, by (2-8), satisfies

1 oF
—(F,—F )(—,c) =0,
%fr( o 6'”4";‘

1

(3-1)

suffix 1 denoting quantities calculated from co-
ordinates (z,;);. Consider a Fourier synthesis whose
coefficients are wF,+(1—w)F,, where w may be
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different for each F,. This synthesis will give co-
ordinates (z,;), which satisfy

1 oF,
2_[{WF0+(1 _w) Fcl}_FcZ] (a_/) =09
NJr Tril 2

or rearranging,

1 oF
5 7 (0P~ o)+ (Fa= Fo)l (3) =0. 62
NJr Lril 2

The synthesis can now be repeated, using as coefficients
wF,+(1—w) F,, and so on. When this has been done
p times co-ordinates (x,;), are obtained which satisfy

1 oF
5 7 00(Fy = Fog) + Pty For) (—) _o.
R »

T Oy
If this approximation process converges,
Fcﬂ_> Fc(p—-l)‘a's.p — 00,

and the final co-ordinates z;; (dropping the suffix)
satisfy

oF
S 2 (F,— Fo)75=0. (3:3)
NJr 8xn~

However, this is exactly the condition for 3] ?i).(.F',, —F,)?
NJr
to be a minimum. An objection to the use of this pro-

cedure in practice is that the result is arrived at by
successive approximations, each step apparently re-
quiring the calculation of a Fouriér synthesis and a set
of structure amplitudes, and the process might con-
verce slowly or not at all. This point is taken up in
§ 4.

4. The analogy of the weighted mean

The result arrived at in § 3 can be illustrated by a
simple analogy. Given a set of numbers x,, x,, ..., Z,,
which may be thought of as observations not all made
with the same accuracy, the weighted mean is given by
M =Zwz/Zw. This value of M makes Zw(x—M)% a
minimum. An alternative way of calculating M is to
form first the mean M, from

nM,=Xz (which makes Z(x— M,)? a minimum),)
then
nM,=E{wr+(1—w) M} etc.,

and finally
nM ,=Z{wx+ (1 —w) M,_}.

This can be rearranged as

B | M, =)

Tw Sw

M, =
In this case it may readily be shown that as

p>0, M,>M, -~ M.
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Of course, there would be no point in calculating a
weighted mean in this indirect way, but if one wishes to
give less weight to certain coefficients of a Fourier series
then the method given in § 3, which is analogous to that
given immediately above, is the only way in which this
can be done. The analogy is useful because of the fol-
lowing result: the number p of approximations which
have to be made in order to get a value M , which is very
close to M depends on the proportion of observations
which have been given a weight less than unity, and the
result of stopping the process at an intermediate stage,
say (4-1), is to give a weight intermediate between I
and w to an observation which is given a weight w in
forming the true weighted mean. The proof of this
statement is as follows.

Writing e=1—Xwn, (4-1) may be rearranged as

nMy=3X(w+e)x,
or since

n=X(w+¢), M,={Z(w+e)r}/E(u+e).

Thus an observation which is given a weight w in
forming M is given a relative weight (w+¢€)/(1+¢) in
forming M,, and since 1> (w+¢€)/(l +€)>w, and the
amount by which (w+¢)/(1 +¢) differs from w depends
on the value of € (that is, on the proportion of obser-
vations which are givenareduced weight), the statement
made above is proved. In view of the close similarity
between the results of this section and those of § 3 one
can predict that the effect of stopping the approxi-
mating process of § 3 at (3-2) will be to give a weight
intermediate between 1 and w to those coefficients to
which a weight w would be given if the process were
continued to (3-3), and the smaller the proportion of
F’s that have been given reduced weight the closer ix
the approximation given by (3-2) to the final result
which satisfies (3-3).

5. The effect of terminating the Fourier series

In practice the Fourier series (2-2) does not contain as
coefficients all F's which have a finite magnitude. If
each F is thought of as being associated with a re-
ciprocal lattice point, then only those F’s which corre-
spond to points contained in a sphere drawn about the
origin in reciprocal space can be observed. The radius of
this limiting sphere depends on the wave-length of
X-rays used in the experiment. The omission of corre-
sponding terms from the Fourier series causes a system
of ‘ripples’ to run through the calculated electron
density distribution, and these ripples displace the
points of maximum electron density. Such ‘finite sum-
mation’ errors have been discussed by Booth (1946),
who suggests the following technique for their elimina-
tion: ‘Having calculated the structure amplitudes from
the final atomic co-ordinates a synthesis is computed
using the calculated values as coefficients. Any terms
not included in the original synthesis with experi-
mental coefficients are similarly omitted from this new
synthesis. The co-ordinates derived will in general
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deviate from those used in calculating the F values,
these deviations give the errors, with reversed signs, of
the original co-ordinates.” In a later paper (Booth,
194756) an attempt is made to justify the method by
applyving certain tests, and it is concluded that "whilst
it cannot be claimed that the foregoing treatment con-
stitutes definite proof of the validity of the correction
technique, it indicates that the errors derived from it
are at least of the right order of magnitude’.

In § 3 it is shown that the correct way to allow for
finite termination is to choose atomic co-ordinates
which make ¥, ! (

nJr
number of structure amplitudes which can be observed.
This gives zero weight to the N'—n which cannot be
observed. That this condition is approximately ful-
filled after correction of the atomic co-ordinates by
Booth’s method can be shown as follows. Let E be a
point of maximum electron density given by a Fourier
series containing n coefficients F,. (x;;), is thus an
experimentally determined atomic co-ordinate, un-
corrected for finite termination. Let B be the corre-
sponding point of maximum electron density given by
a Fourier series containing n coefficients (F JE- (g
denotes a quantity calculated from co-ordinates (r};);..

F,— F)? a minimum, n being the

/

*R
According to Booth R represents the position of the
corresponding atomic centre corrected for finite sum-
mation, where R is defined bv making RE B a straight
line with RE=EB. Since the ripples have a wave-
length long compared with the displacements which
they cause to the atomic co-ordinates, a Fourier
synthesis containing n coefficients (F,), would have an
electron density maximurn at K. Now the synthesis
using experimental coefficients F, also has a maximum
at K, and since the two electron density distributions
have approximately the same shape in the neighbour-
hood of a maximum, their slopes &p,‘¢x; and ép,‘er;
will be the same at the point R. That is, with

1 hx;

Pe= 3 F,,00827r{2 i) (5-1)
} n lj a; ’
1. T

and pPo= ,Z‘,(Fl.),(,cos:h‘zh’?’l, (5-2)

] n .] (IJ-

f}p_"___a’?.“ 5.

ér; ox; (5:3)

at a;= () p-

Since (Fc)re=ZfrCOSQW‘E?L"~({Tj)"’l
r \ j a; /
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(5-3) reduces to

oF, 1 or,
o F( ) (Fa( )
nJr ox Xri/ R V§ T o 12

which is the condition that 2 f_ (F,—(F.)R)? should be

nJr
a minimum. A more rigorous proof of the validity of
Booth’s method can be given in the case where the
number of terms N —n omitted from the Fourier series
is small; since it merely confirms the above result, it
was not, thought to be worth reproducing here.

6. The effect of an artificial temperature factor

A method designed to ensure the convergence of the
Fourier series and therefore the elimination of finite
summation errors has been used by Brill, Grimm,
Hermann & Peters (1939) and consists in multiplying
each F by a converging factor «, generally taken as
having the form « =exp[(— Bsin?#)/A?]. This produces
the same effect on the electron distribution as the real
temperature movement of the atoms, so that o is
usually called the artificial temperature factor. f,, ¥,
and F, are replaced by af,, «F, and aF, respectively,
so that the co-ordinates obtained from a synthesis
whose coefficients are the «F,’s are such as to render

f (F F,)? a minimum. The effect of an artificial
NJr

temperature factor is therefore to give relatively less

weight to structure amplitudes of high order, as might

have been anticipated. An interesting case occurs when

a=f,, the co-ordinates given by the Fourier method

now render 3 (F,— F,)? a minimum, which is the least-
5

squares solution with all observations given unit
weight. One objection to the use of an artificial tem-
perature factorin practice is that, owing tothe spreading
out of the electron distribution, neighbouring atoms
begin to overlap, and the point of maximum electron
density of one atom may be moved by the ‘tail’ of
another. A method of correcting for this effect has
been given by Booth (1946).

7. Discussion

We are now in a position to attempt an answer to the
question whether the Fourier method is the best way of
utilizing the experimental data. The theory of errors
predicts that in the adjustment of indirect observations
involving several unknowns the best values of the un-
knowns are those which make the sum of the squares of
the residuals a minimum, provided that the obser-
vations have all been made with the same accuracy. In
our case the observations are the values of the F,’s, the
unknowns are the co-ordinates of the atoms, and the
residuals the values of F,—F, If the observations
have not all been made with the same accuracy, the best
atomic co-ordinates are those which make Xw(F,— F)?
a minimum, where the weight w of each observation is
inversely proportional to the square of its probable
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error. Since the methods of Hughes (1941) and of
Booth (1947 a) enable all observations to be weighted in
this way and are not influenced by ‘series termination’,
it would appear that they must yield a better result than
the Fourier method. This conclusion involves two
assumptions: (i) the atoms are spherically symmetric,
and (ii) their atomic scattering factors are known. Un-
less these conditions are satisfied F, cannot be calcu-
lated accurately. Since electrons are involved in the
formation of chemical bonds, assumption (i)is in general
not correct. However, only the outer electrons are
affected and these contribute only to reflexions of low
Bragg angle. This has been verified by the experimental
work of James, Brindley & Wood (1929) on aluminium,
and by calculation (Ewald & Honl, 1936) in the case of
carbon. (In this connexion see also Ehrenberg &
Schifer (1932).) For values of (sinf)/A greater than
about 0-3 the assumption that electrons are distributed
around the nucleus with spherical symmetry appears
to be an excellent approximation to the truth. The
second objection may be more serious, because,
although atomic scattering factors can be calculated
accurately, such calculations refer to atoms at rest, and
the effective scattering factor of an atom is always
decreased by thermal movement. Perhaps the most
serious objection to the least-squares method, however,
is a practical one—the amount of work involved in
getting up the observational equations, reducing these
to a set of normal equations and solving the latter for
3m unknowns.

The Fourier method possesses the following advan-
tages: (@) within limits no assumption regarding the
electron distribution in atoms need be made; (b) the
relative values of the atomic scattering factors need be
known only with sufficient accuracy to enable one to
calculate correctly which sign is to be associated with
each | F,|; and (c) the computations involved lend
themselves more readily to mechanization. The dis-
advantages of the unmodified Fourier method are as
follows: (a) no account is taken of the fact that some
observations are much less accurate than others;
(b) errors are introduced by the termination of the
series; and (c) the treatment of § 2 shows that excessive
weight is given to F,’s of high order.

Results arrived at in previous sections show that
these disadvantages can be at least partially eliminated.

(1) In §3 it has been shown that observations
believed to be less accurate than the others can be given
less weight by replacing F, by wF,+ (1 —w) F;inasub-
sequent Fourier synthesis. Observations affected by ex-
tinction can be given zero weight by replacing F, by F,

(2) In §5 it is shown that the method of correcting
for finite termination suggested by Booth can be
justified theoretically.

(3) In §6 it is shown that by introducing an appro-
prlate artificial temperature factor unit weight can be
given to all observations. This has the advantage of
simultaneously reducing finite summation errors.
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1t may therefore be concluded that there are good
reasons, theoretical as well as practical, why the
Fourier method should be used in accurate crystal-
structure determinations.

This work has been done as part of a programme of
investigation of the structures of organic molecules by
X-ray methods. I am grateful to the Department of
Scientific and Industrial Research for financial aid, and
to Prof. Sir Lawrence Bragg and Dr W. H. Taylor for
the facilities they have provided and the interest they
have shown.
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Vibration Amplitudes of Atoms in Cubic Crystals

By KATHLEEN LONSDALE

University College, London, W.C. 1, England

(Recetved 20 February 1948)

Root-mean square amplitudes of atomic vibration are given for twenty elements and twenty-four
compounds crystallizing in the cubic system. The spatial distribution of atomic displacements due
to thermal vibration is calculated from the elastic constants of nineteen cubic crystals, and attention
is drawn to the relationships existing between the amplitudes of pure longitudinal and transverse
waves travelling along the cube edges, face diagonals and cube diagonals, and the structures of thesc

crystals.

From the data given, the intensity of diffuse scattering power could be plotted in reciprocal
space, for comparison with experimental data from monochromatic Laue photographs.

1t is possible to calculate a root-mean square amplitude
of thermal vibration of atoms in cubic crystals if the
Debye characteristic temperature is known. But the
atomsare not just simple-harmonic oscillators, although
their movements are resolvable into a series of har-
monic vibrations. The object of the present paper is in
§1 to give the root-mean square amplitudes and in
§ 2 to investigate the spatial distribution of ampli-
tudes in these component vibrations, and to consider
what relation, if any, exists between the amplitudes of
waves travelling in certain principal directions and the
crystal structure.

1. Root-mean square amplitude of vibration

The Debye-Waller formula, I,= le~2¥, which was
confirmed by early experimenters, applies to cubic
crystals composed of one kind of atom only, at tem-
peratures not too near to the melting-point. It ex-
presses the reduction of Bragg scattering of X-rays by
crystals with increasing temperature, in terms of the
mean square displacement of an atom from the average
position which it occupies in the crystal. In this ex-
pression M is given by

8m2sin? - -
= STEN

322 (1)

M

M may, however, also be expressed in terms of ©, the
Debye characteristic temperature of specific heat theory

_ OR® sin?0 [g(r) 1|

Tmko AT | o Tap

(2)
where A, k are the Planck and Boltzmann constants, m
the mass of the atom in grams, ¢ the Bragg angle, A the
wave-length of X-rays, #=0 T, where T is the absolute
temperature, and ¢(x) is the Debyve function of

1 {‘" &g

xlgef—1

(which is tabulated, for instance, in the Internationale
Tabellen zur Bestimmung von Kristallstrukturen (1935),
2, p. 574). The term } allows for the existence of zero-
point energy.

Equating (1) and (2), we find that

o O (B 1) 436X 1071 b)) 1)

om0« T3S a0 T2 tap

where 4 is the atomic weight in terms of 150, the values
of universal constants used being those given by Birge
(1941).

Table 1 gives the root-mean square amplitudes at
293° K. calculated from equation (3) for a number of



