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The Fourier Method of Crystal-Structure Analysis 

BY W. COCHRAN 
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(Received 8 March 1948) 

Alternative methods which could" be used to derive accurate atomic co-or(tinates from the data 
provided by an X-ray investigation of a crystal structure are discussed. I t  is shown that  the 
customary Fourier series method is closely related to the least-squares method applied to this 
problem by Hughes. On the basis of this result a way in which the Fourier method can be modified 
to give less weight to certain coefficients has been discovered. The effect of terminating the Fourier 
series or introducing an artificial temperature factor is also investigated from the point of view 
of the relation between the Fourier and least-squares solutions. It  is concluded that  no significant 
increase in accuracy could be obtained by abandoning the F()urier method. 

1. Introduction 

Structure determinat ions  by the methods of X-ray 
crystal lography may be divided into two classes: those 
in which the object of the invest igat ion is to determine 
the positions of the atoms with sufficient accuracy to 
give a general picture of the crystal  structure,  and those 
in which the object is to measure as accurately as 
possible the bond lengths and bond angles between 
the atoms. The method of Fourier synthesis fi'om 
observed X-ray reflexion intensities has been widely 
used for both purposes, a l though the writer is not aware 
tha t  any a t t emp t  has been made to show tha t  it is the 
best way of utilizing the experimental  data  when the 
second of these objects is the one in view. Alternat ive 
methods have been suggested by Hughes (1941) and by 
Booth (1947a); their  methods are similar in tha t  the 
atomic co-ordinates are chosen so as to minimize some 
ihnct ion  of the observed and calculated structure 
ampli tudes,  Fo and F~ respectively. In the least- 
squares method as used by Hughes the funct ion mini- 
mized was Z w ( F o - F ~ )  ~, while Booth has suggested 
minimizing Ew(F2o - F~) ~, and has shown how this can 
be done systematical ly  by the method of 's teepest  
descents ' .  Weight ing factors w are introduced to allow 
for the fact t h a t  the Fo's are not  all measurable with the 
same accuracy; an obvious weakness of the Fourier  
method is t ha t  all Fo's, including those few likely to be 
systemat ical ly  in error because of extinction,  etc., must  
be included as coefficients in the Fourier series and must  
therefore influence the result. The purpose of this note 
is to invest igate the relat ionship between the Fourier 
and other methods and to point  out ways in which the 
former can be improved. I t  is worth pointing out t ha t  
we shall be concerned only with the problem of finding 
the best a tomic co-ordinates--def ined as those points 
at  which the electron densi ty reaches a max imum and 
around which the electron dis t r ibut ion is spherically 
symmetr ic  in a small region. I f  it is desired to investi- 
gate the actual  electron distr ibution,  the Fourier 
method is the only one which can be used. 

2. The relation between the Fourier and least 
squares methods 

Consider a s t ructure based on a space group which has 
a centre of symmetry ,  tile s tructure consisting of m 
spherically symmetr ic  atoms. To avoid repet i t ion of 
equations put  

J" I = , r ,  '~2 = Y, ,~'3 = z~ 

]11 =- h,  h 2 = k ,  h 3 : l, 

so t ha t  x~. may denote x, y or z according a s j  -- 1, 2 or 3. 
Let the co-ordinates of the r th  a tom be x~l, x~2, x~a. As 
a simplification it will be assumed t ha t  the three a-axes 
are orthogonal,  a l though this is not an inherent  
l imitat ion.  Then 

and P(XlX2"ra)=i' ~.\. F(blh2h3)eos2rr ..... a~ ~ " (2.2) 

The symbols F,  f and p have their  usual meanings, 
~ denotes a triple summat ion  over h~, h 2 and h a which 
N 
includes all F ' s  of finite magnitude.  

Exper imental ly ,  one measures F o = F + fl, where fl is 
an error of measurement,  and derives therefore 

1 {~ hj,rjl 
P" = l-" ~.v F,, cos 21r ai I " (2.3) 

The atomic co-ordinates derived exper imental ly  there- 
fore differ from the true co-ordinates. Let X'ri be the 
exper imental ly  determined co-ordinate corresponding 
to the t rue co-ordinate x~j. Since the electron densi ty 
is to be a maximum at  xj = x'~, it follows t ha t  

Now put 
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so that  F~ denotes one of a set of structure ampli- 
tudes calculated from experimentally determined co- 
ordinates. Clearly since the Fourier series is assumed 
to be completely convergent a synthesis using the F~'s 
as coefficients must give back the atomic co-ordinates 
which were used in deriving the Fc's. Therefore 

( Dp± 1 - 2 ,  sin 27r!y~ hJx;~! _-0. (2.6, 
:\" ( j ¢~ j ] 

Now from (2.5) 
t OF _-2.hj s n2.1 h_ x: t (27) 

~x'~ aj _" a~ j" 

Therefore, subtracting (2.6) from (2.4) and using (2.7), 

1 F ~F~ 
Z.]~(~,, , , -  Re)~x,.~'--r =0. (2.8) 

Now consider the function 

1 

! 

The co-ordinates Xr~ which make e r a  minimum are 
given by 

~¢~ 1 ~Fc 0 
0, i.e. ~f:(Fo-F~,)---v--  • 

~)X.~j . . . . . . .  ~Xr j  

But this is identical with (2.8), so that  the atomic co- 
ordinates determined by Fourier synthesis are such as 

to render g ~ l ( F o -  F~) ~ a minimum. The Fourier 
d ~ .  

solution is thus a special case of the least-squares 
solution in which the weight given to each observation 
is inversely proportional to the magnitude of the corre- 
sponding atomic scattering factor. The fact that  ¢~ is 
a function of f ,  means that  a different function is 
minimized for each different kind of atom in the 
structure, but since the f-curves of all atoms are similar 
except in scale it is practically the same function that  
is minimized for all. 

3. A modification of  the Fourier method 

The fact that  the Fourier and least-squares methods 
are related and that  in the latter observations can be 
weighted according to one's estimate of their probable 
error suggests that  there may be some way of doing this 
when using the former method. That this is so can be 
shown as follows. 

Let (x'rj)l be one of the atomic co-ordinates deter- 
mined by the unmodified Fourier method. Each co- 
ordinate, by (2-8), satisfies 

(3.~) 

suffix 1 denoting quantities calculated from co- 
l ordinates (xrjh. Consider a Fourier synthesis whose 

coefficients are wFo+(1-w)Fel ,  where w may be 

different for each F o. This synthesis will give oo- 
ordinates (x~j)2 which satisfy 

(° oi ~., 1 [{wFo + (1 - w )  Fc ,}-  Fc2] \ ~ !  =0,  
Nfr 2 

or rearranging, 

N fr \vxrJ]~ =0" 
(3.2) 

The synthesis can now be repeated, using as coefficients 
wFo+ (1 -w)  Fc~ and so on. When this has been done 
p times co-ordinates (x'rj)v are obtained which satisfy 

1 (%1 --0 ~ [w(Fo - F~(v_,)) + (Fc(v_l)- F~v)] 
\~Xrj] I) 

If this approximation process converges, 

Fc~--> Fc(~,_~), as)--> 0% 

and the final co-ordinates x'rj .(dropping the suffix) 
satisfy 

~ ( F o - F ~ )  OFt Ox-Z-~rj=O. (3"3) 

W 
However, this is exactly the condition for ~ _-(2' o -  Fc) 2 

,v:t~ 
to be a minimum. An objection to the use of~his pro- 
cedure in practice is that  the result is arrived at by 
successive approximations, each step apparently re- 
quiring the calculation of a Fourier synthesis and a set 
of structure amplitudes, and the process might con- 
verge slowly or not at all. This point is taken up in 
§4. 

4. The analogy of  the weighted mean 

The result arrived at in § 3 can be illustrated by a 
simple analogy. Given a set of numbers xx, x 2, ..., xn, 
which may be thought of as observations not all made 
with the same accuracy, the weighted mean is given by 
M=Zwx/Zw.  This value of M makes Z w ( x - M )  2 a 
minimum. An alternative way of calculating M is to 
form first the mean M 1 from 

nM l=Zx  (which makes Z(x-M1)  2 a minimum),] 
! 

then 

nM~ = Z{wx + (1 - w) M1} etc., 

] 
and finally / 

nMv= Z{wx + (1 - w) My_l}. J 

(4-1) 

This can be rearranged as 

Zwx n(M~_l-  Mv) 
M~-I =-Z-w-w + Zw " 

In this case it may readily be shown that  as 

p ~ ,  M~M~_I--->M. 
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Of course, there would be no point in calculating a 
weighted mean in this indirect way, but if one wishes to 
give less weight to certain coefficients of a Fourier  series 
then the method given in § 3, which is analogous to tha t  
given immediately  above, is the only way in which this 
can be done. The analogy is useful because of the i\)l- 
lowing result: the number  p of approximat ions  which 
have to be made in order to get a value M~ which is very 
close to M depends on the proportion of obserwttions 
which have been given a weight less than  unity,  and the 
result of stopping the process a t  an intermediate  stage, 
say (4-1), is to give a weight intermediate  between l 
and w to an observation which is given a weight w in 
forming the true weighted mean. The proof of this 
s ta tement  is as follows. 

Writ ing e:= 1 -Vw;n,  (4.1) may  be rearranged as 

nM,,= E(w + e:) x, 
or since 

n=V(w+e),  M2={E(w+e) x}/V(w+e). 
Thus an observation which is given a weight w ira 
forming M is given a relative weight (w+e:)/(1 +e)  in 
forming M2, and since 1 >(w+e)/ ( l+e)>w,  and the 
amount  by which (w + t:)/(l + e) differs from w depends 
on the value of e ( that  is, on the proportion of obser- 
vations which are given a reduced weight), the s t a t ement  
made above is proved. In  view of the close similari ty 
between the results of this section and those of § 3 one 
can predict  tha t  the effect of stopping the approxi- 
mat ing process of § 3 at  (3.2) will be to give a weight 
intermediate  between 1 and w to those coefficients to 
which a weight w would be given if the process were 
continued to (3.3), and the smaller' the proportion of 
Fo's t ha t  have been given reduced weight the closer is 
the approximat ion  given by (3.2) to the final result 
which satisfies (3.3). 

5. The effect of  terminating the Fourier series 

In practice the Fourier series (2-2) does not contain as 
coefficients all F ' s  which have a finite magnitude.  I f  
each F is thought  of as being associated with a re- 
ciprocal lattice point, then only those F ' s  which corre- 
spond to points contained in a sphere drawn about  the 
origin in reciprocal space can be observed. The radius of 
this limiting sphere depends on the wave-length of 
X-rays  used in the experiment.  The omission of corre- 
sponding terms from the Fourier series causes a system 
of ' r ipples '  to run through the calculated electron 
densi ty distribution, and these ripples displace the 
points of max imum electron density. Such 'finite sum- 
ma t ion '  errors have been discussed by Booth (1946), 
who suggests the following technique for their elimina- 
tion: ' Having  calculated the s t ructure  ampli tudes from 
the final atomic co-ordinates a synthesis is computed 
using the calculated values as coefficients. Any terms 
not included in the original synthesis with experi- 
mental  coefficients are similarly omit ted from this new 
synthesis. The co-ordinates derived will in general 

Y S T A L - S T R U C T U R E  A N A L Y S I S  

deviate from those used in calculating the F values, 
these deviations give the errors, with reversed signs, of 
the original co-ordinates." In a later  paper  (Booth, 
1947b) an a t t empt  is made to just i fy the method by 
applying certain tests, and it is concluded tha t  "whilst 
it cannot be claimed that  the foregoing t rea tment  con- 
st i tutes definite proof oi' the validity of the correction 
technique, it indicates tha t  the errors derived from it 
are at  least of the right order of magni tude ' .  

In § 3 it is shown that  the correct way to allow for 
finite terminat ion is to choose atomic co-ordinates 

which make "~ 1 ,~ f i . (F°-  Fc) °- a minimum, n being the 

number  of s t ructure  ampli tudes which can be observed. 
This gives zero weight to the N - n  which cannot be 
observed. Tha t  this condition is approx imate ly  ful- 
filled after  correction of the atomic co-ordinates by 
Booth 's  method can be shown as follows. Let E be a 
point of maximu,n  electron density given by a Fourier  
series containing n coefficients Fo. (x'~j)~: is thus an 
experimental ly  determined atomic co-ordinate, un- 
corrected for finite terminat ion.  Let B be the corre- 
sponding point of max imum electron density given by 
a Fourier  series containing n coefficients (F~,)~:. ( )~: 
denotes a quan t i ty  calculated from co-ordinates (X'rj)l. :. 

. 8  
/ 

/ 
/ 

. /  
/ E  

/ /  
/ 
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According to Booth R represents the position of the 
corresponding atomic centre corrected for finite sum- 
mation, where R is defined by making R E B  a s t ra ight  
line with R E = E B .  Since the ripples have a wave- 
length long compared with the displacements which 
they cause to the atomic co-ordinates, a Fourier  
synthesis containing n coefficients (F~)I, would have an 
electron density max imum at E. Now the synthesis 
using experimental  coefficients F o also has a max imum 
at  E, and since the two electron density distr ibutions 
have approximate ly  the same shape in the neighbour- 
hood of a max imum,  their slopes ~po:~X i and ~pc~?xj 
will be the same at  the point R. That  is, with 

l'l [ ~  hjx~l p,, = ~ F~, cos 2rr (5" 1 ) 
% I 

1 I~ h~xjl 
and P" = 1" ~ ( Fc)n cos 2n %- I '  (5.2) 

~po ~p~ 

at  ~rj = (.r',.j) u. 

Since (Fc)R='~frC°S2n(~ !ti!x-'r-/)relaj ] 
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(5.3) reduces to 

1 1 ~(SFc)  I 1 ~ /SF~\ 

which is the condition that  ~ 1 n fr (F° -- (Fc)R)2 should be 

a minimum. A more rigorous proof of the validity of 
Booth's method can be given in the case where the 
lmmber of terms N - n  omitted from the Fourier series 
is small; since it merely confirms the above result, it 
was not thought to be worth reproducing here. 

6. The effect o f  an artificial temperature factor 

A method designed to ensure the convergence of the 
Fourier series and therefore the elimination of finite 
summation errors has been used by Brill, Grimm, 
Hermann & Peters (1939) and consists in multiplying 
each F by a converging factor a, generally taken as 
having the form a = exp[( - B sin 9 0)/h2]. This produces 
the same effect on the electron distribution as the real 
temperature movement of the atoms, so that  a is 
usually called the artificial temperature factor, fr, Fo 
and F c are replaced by ~fr, ~Fo and ~F~ respectively, 
so that  the co-ordinates obtained from a synthesis 
whose coefficients are the czFo's are such as to render 

~., ~ ( F o -  Fc) ~ a minimum. The effect of an artificial 
~ y  J r  

temperature factor is therefore to give relatively less 
weight to structure amplitudes of high order, as might 
have been anticipated. An interesting case occurs when 

=Jr, the co-ordinates given by the Fourier method 
now render ~ (Fo - F~) 2 a minimum, which is the least- 

N 

squares solution with all observations given unit 
weight. One objection to the use of ~n artificial tem- 
perature factor in practice is that, owing to the spreading 
out of the electron distribution, neighbouring atoms 
begin to overlap, and the point of maximum electron 
density of one atom may be moved by the ' ta i l '  of 
another. A method of correcting for this effect has 
been given by Booth (1946). 

7. Discussion 

We are now in a position to attempt an answer to the 
question whether the Fourier method is the best way of 
utilizing the experimental data. The theory of errors 
predicts that  in the adjustment of indirect observations 
involving several unknowns the best values of the un- 
knowns are those which make the sum of the squares of 
the residuals a minimum, provided that  the obser- 
vations have all been made with the same accuracy. In 
our case the observations are the values of the Fo's, the 
unknowns are the co-ordinates of the atoms, and the 
residuals the values of F o - F  c. If  the observations 
have not all been made with the same accuracy, the best 
atomic co-ordinates are those which make Zw(Fo - Fc) 2 
a minimum, where the weight w of each observation is 
inversely proportional to the square of its probable 

error. Since the methods of Hughes (1941) and of 
Booth (1947 a) enable all observations to be weighted in 
this way and are not influenced b:~' series termination ', 
it would appear that  they must yield a better result than 
the Fourier method. This conclusion involves two 
assumptions: (i) the atoms are spherically symmetric, 
and (ii) their atomic scattering factors are known. Un- 
less these conditions are satisfied Fc cannot be calcu- 
lated accurately. Since electrons are involved in the 
formation of chemical bonds, assumption (i) is in general 
not correct. However, only the outer electrons are 
affected and these contribute only to reflexions of low 
Bragg angle. This has been verified by the experimental 
work of James, Brindley & Wood (1929) on alum iniu m, 
and by calculation (Ewald & H5nl, 1936) in the case of 
carbon. (In this connexion see also Ehrenberg & 
Sch/~fer (1932).) For values of (sin0)/A greater than 
about 0.3 the assumption that  electrons are distributed 
around the nucleus with spherical symmetry appears 
to be an excellent approximation to the truth. The 
second objection may be more serious, because, 
although atomic scattering factors can be calculated 
accurately, such calculations refer to atoms at rest, and 
the effective scattering factor of an atom is always 
decreased by thermal movement. Perhaps the most 
serious objection to the least-squares method, however, 
is a practical one--the amount of work involved in 
setting up the observational equations, reducing these 
to a set of normal equations and solving the latter for 
3m unknowns. 

The Fourier method possesses the following advan- 
tages: (a) within limits no assumption regarding the 
electron distribution in atoms need be made; (b) the 
relative values of the atomic scattering factors need be 
known only with sufficient accuracy to enable one to 
calculate correctly which sign is to be associated with 
each I Fo I; and (c) the computations involved lend 
themselves more readily to mechanization. The dis- 
advantages of the unmodified Fourier method are as 
follows: (a) no account is taken of the fact that  some 
observations are much less accurate than others; 
(b) errors are introduced by the termination of the 
series; and (c) the treatment of § 2 shows that  excessive 
weight is given to Fo's of high order. 

Results arrived at in previous sections show that  
these disadvantages can be at least partially eliminated. 

(1) In § 3 it has been shown that observations 
believed to be less accurate than the others can be given 
less weight by replacing Fo by wFo + (1 - w) Fc in a sub- 
sequent Fourier synthesis. Observations affected by ex- 
tinction can be given zero weight by replacing Fo by Fc 

(2) In § 5 it is shown that  the method of correcting 
ibr finite termination suggested by Booth can be 
j ustified theoretically. 

(3) In § 6 it is shown that by introducing an appr O- 
priate artificial temperature factor unit weight can be 
given to all observations. This has the advantage of 
simultaneously reducing finite summation errors. 
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I t  m a y  therefore be concluded tha t  there are good 
reasons, theoretical as well as practical ,  why the 
Fourier  method should be used in accurate  crystal- 
s t ructure  determinations.  

This work has been done as par t  of a programme of 
investigation of the s t ructures  of organic molecules by 
X- ray  methods.  I am grateful  to the Depa r tmen t  of 
Scientific and Indust r ia l  Research for financial aid, and 
to Prof. Sir Lawrence Bragg and Dr W. H. Taylor  for 
the facilities they  have provided and the interest, they  
have shown. 
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Vibration Amplitudes of  Atoms  in Cubic Crystals 

BY KATHLEEN LONSDALE 
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(Received 20 _February 1948) 

Root-mean square amplitudes of atomic vibration are given for twenty elements and twenty-four 
compounds crystallizing in the cubic system. The spatial distribution of atomic displacements due 
to thermal vibration is calculated from the elastic constants of nineteen cubic crystals, and attent.ion 
is drawn to the relationships existing between the amplitudes of pure longitudinal and transverse 
waves travelling along the cube edges, face diagonals and cube diagonals, and the structures of these 
crystals. 

From the data  given, the intensity ()f diffuse scattering power could be plotted in reciprocal 
space, for comparison with experimental data from monochromatic Laue photographs. 

It  is possible to calculate a root-mean square ampli tude 
of thermal  vibrat ion of a toms in cubic crystals if the 
Debye characterist ic tempera ture  is known. But  the 
atoms are not just  simple-harmonic oscillators, al though 
their movements  are resolvable into a series of har- 
monic vibrations.  The object of the present paper is in 
§ 1 to give the root-mean square ampli tudes and in 
§ 2 to investigate the spatial  distribution of ampli- 
tudes in these component vibrations,  and to consider 
what  relation, if any,  exists between the ampli tudes of 
waves travell ing in certain principal directions and the 
crystal  s tructure.  

1. Root-mean square amplitude of  vibration 
The Debye-Waller  formula,  I T =  Ie -2M, which was 

confirmed by early experimenters,  applies to cubic 
crystals composed of one kind of atom only, at  tem- 
peratures  not too near to the melting-point.  I t  ex- 
presses the reduction of Bragg scattering of X-rays  by 
crystals with increasing teInperature,  in terms of the 
mean square displacement of an atom from the average 
position which it occupies in the crystal.  In this ex- 
pression M is given by 

8rr 2 sin 2 0 .... 
M . . . . . .  u'. (1) 

3/12 

M may,  however, also be expressed in terms of ®, t he 
Debye characterist ic t empera ture  of specific heat theory 

6h 2 sin e0 let,r) I I 
M=m-k, 0 /1z [ i r + i ~ t  , (2) 

where h, k are t he Planek and Bol tzmann constants,  m 
the mass of the a tom in grams, 0 tile Bragg angle,/1 the 
wave-length of X-rays,  x = @ T ,  where T is the absolute 
temperature ,  and ¢(x) is the Debve function of 

1 (.~ &~ 
x o e~_ 1 

(which is t.abulated, for instance, in the Inter~m.tionale 
Tabellen zur Bestirnmung yon Kristall.struleturen (1935), 
2, p. 574). The term 1 allows for the existence of zero- 
point energy. 

Equat ing  (1) and (2), we find tha t  

9h 2 [¢(x) 11 4 .364x 10 --aa [~5(,r)+ 1 / 
u2=4n2i'in.O[-a; + 4 t =  At.) ....... [ x " 41' (3) 

where A is the atomic weight in t.erms of 1~O, t he values 
of universal constants  used being those given by Birge 
(1941). 

Table 1 gives the root-mean square ampli tudes at  
293 ° K. calculated from equation (3) for a number  of 


